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Abstract. We calculate the cross section for cc̄g-production in diffractive DIS with finite quark masses at
zero momentum transfer t. The calculation is done in the leading log(1/xP) approximation and is valid
in the region of high diffractive masses M (small β). We apply our cross section formula including both
cc̄- and cc̄g in a Monte Carlo simulation to diffractive D∗± meson production at HERA. We compare our
predictions to results of H1 using three parameterizations for the unintegrated gluon density.

1 Introduction

In the process of diffractive deep inelastic scattering, γ∗+
p → p+X, one can separate perturbative and non-pertur-
bative contributions by filtering out particular diffractive
final states. Examples of diffractive states which are per-
turbatively calculable are longitudinal vector particles or
final states which consist of hard jets (and no soft rem-
nant). In the latter case the hard scale which allows the use
of pQCD is provided by the large transverse momenta of
the jets, and the Pomeron exchange is modeled by the un-
integrated gluon density. Another particularly interesting
example is diffractive charm production, since the charm
quark mass justifies pQCD, even for not so large trans-
verse momenta of the outgoing quarks and gluons. Calcu-
lations for the diffractive production of massless open qq̄
states and of massless qq̄g states have been reported in [1–
3] and in [4], respectively, and a comparison of diffractive
two-jet and three-jet events observed at HERA with these
calculations has been presented in [5]. Final states with fi-
nite quark masses have been calculated, so far, only for qq̄
production [6] which is expected to be the dominant final
state in the region of small diffractive masses (large β).
However, as there are recent measurements of diffractive
D∗± - production from the H1 [7] and ZEUS [8] collabo-
rations at HERA, which extend into the small-β-region,
gluon radiation can certainly not be neglected, and a full
perturbative calculation of qq̄g is needed.

In this article we report on a calculation of massive
qq̄g-production in diffractive deep inelastic scattering, and
we present a comparison of our cross section formula with
the measurements of H1 [7].

∗ Supported by the TMR Network “QCD and Deep Structure
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Fig. 1. Kinematics of diffractive qq̄g production

2 Calculation of massive qq̄g production

We will follow the study of massless qq̄g-production pre-
sented in [4]. In particular, we again work in the leading-
log M2 approximation, which limits the applicability of
our results to the small β-region. Figure 1 shows the nota-
tions of the process. As in [4] we restrict ourselves to zero
momentum transfer, t = r2 = 0. As usually, Q2 denotes
the virtuality of the photon,

√
W 2 the energy of the pho-

ton proton system, M the mass of the diffractive system,
and x = Q2/(Q2 +W 2), y = pq/pl are the Bjorken scal-
ing variables (with l being the momentum of the incoming
electron). The variable β is defined as β = Q2/(Q2+M2),
and it is convenient to introduce the momentum fraction
of the Pomeron by xP = (Q2 +M2)/(Q2 +W 2).

We restrict our calculation to the region (leading-log
M2 approximation):

Q2 � M2 � W 2. (1)

We use Sudakov variables ki = αiq
′ + βip+ ki t (with

q′ = q + xp, k2
i t = −k2

i ), and we express the phase space
in terms of y, Q2, M2, m2, t, k2

1, k
2
2 with m2 = m2

qq + k2
2

(mqq denotes the invariant mass of the qq̄-subsystem). We
obtain the following result:
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dσe−p
D

dydQ2dM2dm2d2k1d2k2dt |t=0

=
αem

yQ2π
·
[
1 + (1− y)2

2
dσγ∗p

D,T+

dM2dm2d2k1d2k2dt|t=0

−2(1− y)
dσγ∗p

D,T−
dM2dm2d2k1d2k2dt|t=0

+(1− y)
dσγ∗p

D,L

dM2dm2d2k1d2k2dt|t=0

+(2− y)
√
1− y

dσγ∗p
D,I

dM2dm2d2k1d2k2dt|t=0

]
, (2)

The differential cross sections of γ∗p → ccg + p are given
by:

dσγ∗p
D,T+

dM2dm2d2k1d2k2dt|t=0

=
9

128π
1√

S(M2 − m2)m2
e2
cαemα3

sα1(1− α1)

· [(α2
1 + (1− α1)2

)
MilM

′
il +m2

qMlM
′
l

]
(3)

dσγ∗p
D,T−

dM2dm2d2k1d2k2dt|t=0

=
9

128π
1√

S(M2 − m2)m2
e2
cαemα3

sα
2
1(1− α1)2

· [M1lM
′
1l − M2lM

′
2l] (4)

dσγ∗p
D,L

dM2dm2d2k1d2k2dt|t=0

=
9

128π
1√

S(M2 − m2)m2

·e2
cαemα3

s4α
3
1(1− α1)3Q2MlM

′
l (5)

dσγ∗p
D,I

dM2dm2d2k1d2k2dt|t=0

=
9

128π
1√

S(M2 − m2)m2
e2
cαemα3

sα
2
1(1− α1)2

·(1− 2α1)
√

Q2 [M1lM
′
l +MlM

′
1l] (6)

with

S =
(
1 +

k2
1

m2 − (k1 + k2)2

m2

)2

− 4
(k2

1 +m2
q)

m2 , (7)

Mil =
∫

d2l
πl2

F(xP, l2)Til, (8)

and

Til =
(

l+ k1 + k2

D(l+ k1 + k2)
+

k1 + k2

D(k1 + k2)
− k1 − l

D(k1 − l)

− k1

D(k1)

)
i

(
l+ k2

(l+ k2)2
− k2

k2
2

)
l

+ (l → −l) (9)

Tl =
(

1
D(l+ k1 + k2)

+
1

D(k1 + k2)
− 1

D(k1 − l)

− 1
D(k1)

)(
l+ k2

(l+ k2)2
− k2

k2
2

)
l

+ (l → −l). (10)

Here
D(k) = α1(1− α1)Q2 + k2 +m2

q, (11)

and the function F denotes the unintegrated (forward)
gluon density1 which is connected with the usual gluon
density g(x,Q2) through:

∫ Q2

0
dl2F(x, l2) � xg(x,Q2). (12)

The � sign in the above equation indicates that the rela-
tion is valid for large Q2. Strictly speaking, the kinemat-
ics of diffractive qq̄g production requires the nonforward
(skewed) gluon density. However, our cross section formula
has been derived in the leading-lnW 2, leading-lnM2 ap-
proximation, and the use of the gluon density in (12) is
valid only in the double logarithmic approximation where
skewedness is negligeable.

The parameter α1 is determined by the on-shell con-
ditions for the final state particles:

α1 =
1
2

[
1 +

k2
1

m2 − (k1 + k2)2

m2 ±
√
S

]
, (13)

and it varies between 0 and 1. The values of the momenta
k1, k2 and of m2 determine the sign in (13). The validity
of our cross section formula is restricted to the kinematic
region where the gluon transverse momentum k2 is not
small.

The quark mass mq enters the calculations in two
places. First, the phase space of the diffractive system (and
so the parameter α1 and the function S) depend upon the
quark mass via the on-shell conditions for the outgoing
particles. Secondly, the propagators of the internal fermion
lines are modified by a nonzero quark mass which leads to
changes in the matrix-elements. Apart from the function
D(k), (11), which enters in all four γ∗p - cross sections,
an additional term containing the quark mass emerges in
dσγ∗p

D,T+ (3).

3 Comparison with measurements

Compared to other charmed particles, D∗± mesons are
easy to reconstruct which makes them attractive objects
for testing diffractive charm production. D∗± mesons are
identified via the decay channel

D∗+ → D0π+
slow → (K−π+)π+

slow (and c.c.),

which has a branching ratio of 2.63% [9]. In the follow-
ing comparison we concentrate on a comparison with the

1 Note that different definitions for F exist, here we use F
as defined in (8)
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measurement of the H1 collaboration [7], who has ana-
lyzed data collected throughout the years 1995-1997. The
amount of data is still quite poor due to the small branch-
ing ratio of the D∗ meson, but higher statistics will come
from new data.

We have implemented the cross section formulae for
diffractive massive cc̄ production [6] and from our ex-
pression (2)–(6) for the massive qq̄g production into the
Monte Carlo generator Rapgap[10,11], which includes
full hadronization according to the Lund string model as
implemented in Jetset/Pythia[12,13]. We have used a
fixed strong coupling constant αs = 0.25, and a charm
quark mass of mq = 1.5 GeV. The transition of the charm
quark to the D∗ meson is performed via the Lund heavy
quark fragmentation function. Since the experimental
measurement does not separate the charge of the D∗ me-
son, we have added the cross sections of both charged D∗
mesons.

Events generated with Rapgap are selected within the
same kinematic region as in the measurement of H1 [7],
using electron and proton momenta (in the HERA system)
of 27.6 GeV and 820 GeV, respectively, and:

0.05 ≤ y ≤ 0.7 (14)

2 ≤ Q2 ≤ 100 GeV2

xP < 0.04
|t| < 1 GeV2

As the measured cross section is integrated over t for |t| ≤
1 GeV2, we have multiplied our cross section formulas (2)–
(6), valid for |t| = 0, with a phenomenologically motivated
t distribution of the form:

f2(t) =

(
4− 2.8t
4− t

1(
1− t

0.7

)2
)2

(15)

The D∗ mesons are experimentally detected in the range:

|η(D∗±)| < 1.5 (16)
pT (D∗±) > 2 GeV

with the pseudo-rapidity η = − log tan(θ/2) and the trans-
verse momentum pT of the D∗ meson measured in the ep
laboratory system.

As can be seen from (9), (10), there is a potential diver-
gency, if the transverse momentum of the final state gluon
k2

2 approaches zero. In order to avoid the non-perturbative
region, we impose a lower cutoff k2

2cut on the gluon trans-
verse momentum. In our calculations we have considered
k2cut = 1 GeV and k2cut = 1.5 GeV. For the uninte-
grated gluon density, which enters in (8), we have used
three different approaches: the derivative of the NLO GRV
[14] gluon density dGRV, the unintegrated gluon density
F(x, l2) obtained in the saturation model of Golec-Biernat
and Wüsthoff [15] GBW, and the CCFM [16–19] uninte-
grated gluon density A(x, l2, q̄2) JS of [20,21], where q̄ de-
fines the evolution scale, related to the maximum allowed
angle of any emission in the angular ordering approach.

The unintegrated gluon density can be obtained from
the integrated gluon density, if in (12) the � sign is re-
placed by an equality sign:

F(x, l2) = ∂ xg(x, µ2)
∂ µ2

∣∣∣∣
µ2=l2

(17)

Here we use for xg(x, µ2) the NLO GRV [14] gluon den-
sity, since it is the only integrated gluon density available,
starting at a low value of Q2

0 = 0.4 GeV2. Due to the
finite Q0 in any of the available integrated gluon densi-
ties, a lower integration limit l2min � Q2

0 in (8) is intro-
duced. Variation of this parameter mainly affects the nor-
malization of the cross sections. For example, when l2min

is decreased from 1 to 0.5 GeV2, the xP-distribution at
k2cut = 1 GeV roughly doubles in the whole xP range.
We have chosen to set l2min as small as it is compati-
ble with the definition of the integrated gluon density, so
l2min = 0.4 GeV2 for dGRV. The other two unintegrated
gluon densities, GBW and JS, are defined also for the very
small l2 region, and therefore no cut needs to be applied
there. In the numerical treatment of the cc̄ production
cross section neither k2

2cut nor l2min are needed.
In Fig. 2 we show the effect of changing the cut k2

cut

on the differential cross section dσ/dxP, for diffractive D∗
meson production in the kinematic region specified above
and compare our prediction to the measurement of H1
[7]. Also shown in Fig. 2 are the individual contributions
of cc̄ (dashed histogram) and cc̄g (dotted histogram). One
clearly sees the reduction of the cc̄g contribution when the
cutoff in kcut is increased. Since our calculation is valid for
small xP, we focus only on agreement in the low xP region.
A cutoff value of k2

cut = 1.5 GeV2 seems to be a reason-
able choice which we will keep independently of the choice
of the unintegrated gluon density. With this cut the com-
puted cross section in the lower xP bin agrees well with the
data. In the upper xP bin, however, the theoretical curve
is by a factor of about 10 smaller than the data point
(ignoring the large error on the measurement). In this xP-
region it is expected that, apart from Pomeron exchange
(which, in our model, is the 2-gluon exchange) secondary
exchanges have to be included: in a perturbative descrip-
tion such an exchange corresponds to qq̄-exchange. Since
such a contribution has not yet been included into our
calculation, it is not surprising that the two-gluon model
undershoots the data.

In Fig. 3a we compare our prediction of the cross sec-
tion for diffractive D∗ production as a function of log10 β
with the measurement of H1 (it is understood, that all
other variables, in particular xP, are integrated over). We
also show the individual contributions of cc̄ (dashed his-
togram) and cc̄g (dotted histogram). Clearly, the cc̄g is
badly needed in order to get closer to the data than with
cc̄ alone. The measured cross section is slowly rising with
decreasing log10 β. The theoretical curve does not quite
follow this rise, the reason for this is the correlation be-
tween β and xP: small β values require large diffractive
masses M , which due to the kinematic restrictions in the
analysis, are predominantly produced at large xP. As ar-
gued above the large xP-region needs secondary exchange
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Fig. 2a,b. The cross section dσ/
dxP for diffractive D∗ production
within the kinematic range specified in
the text. The point are the measured
cross section from H1 [7]. The predic-
tion obtained with kcut = 1 (1.5) GeV
is shown in a (b). The dashed (dot-
ted) line shows the cc̄ (cc̄g) contribu-
tion alone and the solid line is the sum
of both. The dGRV unintegrated gluon
density is used, with l2min = 0.4GeV2
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Fig. 3a,b. The differential cross sec-
tion dσ/d log10 β for diffractive D∗ pro-
duction compared to the measured
cross section from H1 a. In b the dif-
ferential cross section dσ/dβ is shown.
In all cases we use kcut = 1.5 GeV and
the dGRV unintegrated gluon density.
The dashed (dotted) line shows the cc̄
(cc̄g) contribution alone and the solid
line is the sum of both

which in our approach is not yet included. For illustration,
we show in Fig. 3b the cross section for diffractive D∗ pro-
duction dσ/dβ. We observe that the strong drop in cross
section at small β, as seen in Fig. 3a is a consequence of
plotting dσ/d log10 β instead of dσ/dβ. From Fig. 3b we
see that the theoretical curve increases towards low β,
and only at β < 0.01 is decreasing, which again is a con-
sequence of kinematic correlations. If the double differen-
tial cross section d2σ/dβdxP is considered, our prediction
shows the expected rise towards small β at fixed xP. The
shape of the theoretical curves as a function of β is almost
independent of the choice of the cutoffs l2min and kcut, as
they mainly affect the overall magnitude of the cross sec-
tion. In the small β region, corresponding to large diffrac-
tive masses M , also the radiation of more than one gluon,
such as cc̄gg need to be considered. Since experimentally
the cross section is defined as e+p → e′+(D∗+X)+pdiff ,
where in the diffractive systemM = D∗+X, the hadronic
state X is not further specified or measured, multiple soft
gluon contributions might be present in the data, which
have yet not been estimated consistently in the perturba-
tive calculations.

The saturation model of K. Golec-Biernat and M.
Wüsthoff [15] describes a completely different approach to
estimate the unintegrated gluon density F(x, l2), which is
needed in (8). In this model the total γ∗p cross section
is described by the interaction of a qq̄ pair (dipole) with
the proton, and a particular ansatz is made for the dipole
cross section. The function F(x, l2) has the form

F(x, l2) = 3σ0

4π2αs
R2

0(x)l
2e−R2

0(x) l2 ,

R0 =
1

GeV

(
x

x0

)λ/2

, (18)

and the three parameters of the model are determined by
fitting inclusive DIS data (including charm with: σ0 =
29.12 mb,λ = 0.277, x0 = 0.41 10−4 and αs = 0.2 [15]).
For large l2, F(x, l2) has the meaning of the unintegrated
gluon density, but for smaller l2 the function looses this
interpretation and has to be viewed as a (model depen-
dent) extrapolation. The ansatz (18) holds for the qq̄ color
dipole cross section. The qq̄g system consists of a color
triplet, and anti-triplet and a color octet, and one expects
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Fig. 4a,b. The differential cross sec-
tion dσ/dxP for diffractive D∗ produc-
tion compared to the measured cross
section from H1 a. In b the differen-
tial cross section dσ/dβ is shown. In all
cases we use kcut = 1.5 GeV and the
GBW unintegrated gluon density from
the saturation model. The dashed (dot-
ted) line shows the cc̄ (cc̄g) contribu-
tion alone and the solid line is the sum
of both

that the dominant configuration is a dipole consisting of
two octets: in (18) we therefore rescale the color charge
and use:

F(x, l2) = 3σ0

2.252 · 4π2αs
R2

0(x)l
2e

−R2
0(x)

2.25 l2 . (19)

Insertion of the ansatz (18), (19) into (12) leads to an in-
tegrand that vanishes as l2 goes to zero. Therefore, within
this model we no longer need any lower cutoff in the l2 in-
tegral, and our calculation provides absolute predictions
of the cross sections (note, however, that we still have
the cutoff kcut = 1.5 GeV on the final state gluon). Fig-
ure 4 shows the differential cross section dσ/dxP calcu-
lated using (18), (19) compared to the measurement of
H1. The calculated cross section (cc̄+cc̄g) is similar to
that of Fig. 3, and the same discussion applies. Also the β
distribution (Fig. 4b) is very similar to the previous model.
Note that without the correcting color factor in the dipole
cross section formula the cc̄g cross section would be larger
by about a factor of about 1.5.

The unintegrated gluon density, based on the consis-
tent treatment of color coherence effects, is described by
the CCFM evolution equation [16–19]. According to the
CCFM equation, the emission of partons during the initial
state cascade is allowed only in an angular-ordered region
of phase space. In the large (small) x limit, the CCFM
equation is equivalent to the DGLAP (BFKL) evolution
equations, respectively. A solution of the CCFM equation
has been found, which successfully can be used to describe
a bulk of measurements at HERA and the Tevatron [20–
22]. However, due to the angular ordering requirement,
the unintegrated gluon density A(x, l2, q̄2) is now also a
function of the evolution scale q̄, which is related to the
maximum allowed angle. Here, this scale is set either by
the qq̄ pair, or by the final state gluon for qq̄g:

q̄2 =

{
m2

qq̄ +Q2
t for qq̄

k2
2

1−z for qq̄g
(20)

with Qt being the vectorial sum of the transverse mo-
menta of the qq̄ pair, and z = (Q2 + m2

qq)/(Q
2 +M2).

Since the explicit parameterization ofA(x, l2, q̄2) from [20]
is valid also in the very small l2 region, no cut on l2 needs
to be applied for the integral in (8). The results for the dif-
ferential cross sections as a function of xP and the log10 β
shown in Fig. 5a and b are quite similar to those of the
unintegrated gluon density from saturation model GBW
and or from the derivative of the integrated gluon density
dGRV. The main difference is the ratio of cc̄ and cc̄g con-
tribution. The enhancement of the β distribution by cc̄g
is much stronger than in case of the two other models.

4 Conclusion

In this article we have analyzed DIS diffractive charm pro-
duction (production of D∗± mesons) within the pertur-
bative two-gluon model. For the two-gluon amplitude we
have used three different models: the unintegrated gluon
density derived from the integrated DGLAP gluon den-
sity dGRV, the saturation model of Golec-Biernat and
Wüsthoff GBW, and a CCFM-based unintegrated gluon
density JS (the last two models are parameter-free, the
first one depends upon a cutoff on the internal momentum
integral). In all three cases the calculated cross sections are
of the same order of magnitude as the data, and within
the kinematical region where the models apply, the shapes
of the cross sections are consistent with the data. Com-
pared to an earlier attempt (with the dGRV gluon density)
where only cc̄ production had been included in the theo-
retical analysis the present analysis contains, as the new
ingredient, also (massive) cc̄g production and leads to a
considerable improvement in the agreement with experi-
mental data.

It is encouraging to see that, for the dGRV gluon den-
sity, our analysis of diffractive charm production uses the
same parameters as in the successful analysis of diffractive
jet production and we were able to consistently describe
both types of processes.

We view the use of the two-gluon model as part of a
more general strategy of analyzing DIS diffraction data
at HERA. In a first step one would analyze those diffrac-
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Fig. 5a,b. The differential cross sec-
tion dσ/dxP for diffractive D∗ produc-
tion compared to the measured cross
section from H1 a. In b the differen-
tial cross section dσ/dβ is shown. In all
cases we use kcut = 1.5 GeV and the
CCFM based JS unintegrated gluon
density. The dashed (dotted) line shows
the cc̄ (cc̄g) contribution alone and the
solid line is the sum of both

tive final states which are dominated by short distances
(diffractive jets or states consisting of heavy quarks): in
these processes the application of the two-gluon model can
be justified. In a second step, one would try to extrapolate
also into kinematic regions where soft physics becomes im-
portant. In the present analysis, such extrapolations are
contained in the saturation model and in the CCFM am-
plitude; the use of the GRV gluon density, on the other
hand, requires a momentum cutoff. In a final (and future)
step one would need to find a QCD-based ‘derivation’ of
the extrapolation from hard to soft physics.
Despite this encouraging success, several improvements

in the theoretical part of our model should be made. First,
since the cross section formula for cc̄g production has
only been calculated in the leading log-M2 approximation,
an improvement which extends the applicability down to
small-M2 values would be very desirable. For consistency
reasons, one then would need a NLO-calculation of cc̄ pro-
duction. Results of such a calculation would also allow to
eliminate the cut on the transverse momentum of the fi-
nal state gluon. Next, since the region of xP > 0.02 seems
to require secondary exchanges, they should be modeled,
in the framework of perturbative QCD, by qq̄ exchange.
Finally, our comparison with data indicates the need of
cc̄gg final states: such an extension (at least in the leading
log-M2 approximation) should be fairly straightforward.
A successful test of the two-gluon model in DIS Diffrac-
tion, apart form providing a description of charm or jet
production at HERA, is also of general theoretical inter-
est: the cross section formula for diffractive qq̄ + ng pro-
duction contains the perturbative triple Pomeron vertex
which is expected to play a vital role in the unitarization
of the BFKL approximation. It has been calculated both
analytically and numerically, and these calculations can
be tested experimentally in DIS diffraction dissociation.
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